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ACOUSTIC–VORTICITY WAVES IN SWIRLING
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The propagation of small disturbances in an annular duct with a mean vortical swirling
flow is studied. The disturbance velocity is split into a nearly-convected part and a
nearly-sonic part, obeying weakly coupled equations. A normal mode analysis shows that
the eigenvalues are segregated into a finite number of propagating pressure-dominated
nearly-sonic waves and a cluster of infinite number of vorticity-dominated nearly-convected
modes. A generalized gust can then be identified with the vorticity-dominated
nearly-convected eigensolutions. The nearly-convected eigenvalues form two branches on
either side of a critical layer which corresponds to purely convected modes. An asymptotic
analysis is used to investigate the stability of the nearly-convected eigensolutions in the
vicinity of the critical layer.
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1. INTRODUCTION

The propagation of small disturbances in axial flow tubomachines and their interaction
with a blade row have been extensively investigated in view of their relevance to noise
generation and aeroelastic instabilities such as flutter and forced vibration. In modelling
such flows, the disturbances are usually imposed upstream on a uniform mean flow. This
brings about a significant simplification making it possible to split the flow disturbances
upstream into distinct acoustic, entropic and vortical modes obeying separate equations
[1]. These various modes may couple as the flow moves downstream and interacts with
a blade row. This model is adequate for inlet distortions interacting with a blade row.
However, for disturbances developing and propagating behind a rotor stage, the flow has
a significant mean swirl which may strongly affect the nature and propagation of the
disturbances as well as the unsteady forces and noise resulting from their interaction with
a downstream blade row.

Kerrebrock [2] analyzed the effect of a mean flow swirl on the propagation of small
disturbances in a duct. He pointed out that disturbances of flows with strong rotation will
generate imbalanced centrifugal and Coriolis forces which will couple the vorticity, entropy
and pressure modes. Kerrebrock also carried out a normal mode analysis to quantify the
effects of mean flow swirl. His analysis indicates that shear disturbances are not purely
convected by the mean flow but rather exhibit an oscillatory behavior. Such
nearly-convected disturbances carry a weak pressure component with them.

The objective of the present paper is to revisit the problem of propagation of small
disturbances in swirling flows as a step toward formulating and developing an
aerodynamic/aeroacoustic model for thier propagation and interaction with a downstream
blade row. To this end, Kerrebrock’s important conclusion that shear disturbances are
nearly-convected and carry only a weak pressure component is used to split the velocity
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field into a nearly-convected part and a nearly-sonic part, obeying weakly coupled
equations. This splitting has the advantage of elucidating the physical phenomena which
involve two types of waves, vorticity-dominated and pressure-dominated, and thus paves
the way for generalizing the classical definition of a gust in vortical swirling flow. The
present analysis gives a complete description of the system of waves developing in the fluid.
Certain cases may be omitted if the treatment were only confined to a normal mode
analysis. For example in the case of a free vortex flow, Kerrebrock’s analysis shows that
all shear waves would be unstable and would grow exponentially. By contrast, the present
analysis shows that in the case of a potential swirl the velocity of the disturbances remains
finite, the pressure associated with them decays, while the vorticity increases linearly as
they propagate along the axis of the machine. Similar results were also obtained by
Wundrow [3]. The failure of normal mode analysis to predict the correct behavior of
the vortical waves results from an incorrect limiting process of a singular eigenvalue
equation.

As in Kerrebrock’s analysis, the mean flow is represented as a combination of a uniform
axial flow, a solid body rotation, and a free vortex. This mean flow model defines the swirl
in terms of two parameters representing the angular velocity and the strength of the axial
vortex and gives a good approximation of turbomachinery flows [4]. In a previous paper
[5], the authors considered the propagation of acoustic waves in an annular duct with mean
potential swirling flow. In this case, the acoustic modes can be independent of the vortical
modes. Nonetheless, a normal mode analysis leads to a non-Sturm–Liouville eigenvalue
problem (not self-adjoint). The results show that the refraction effect of the mean swirl
changes the modal phase speeds and thus modifies the cut-on frequency due a Doppler
shift. Thus, modes propagating opposite to the swirling motion have a smaller cut-on
frequency. Similar results are usually found in problems associated with the propagation
of acoustic waves in ducts with shear boundary layers next to the wall. The corresponding
eigenvalue problem is also not self-adjoint and it is not possible for such boundary value
problems to reach conclusions about orthogonality and completeness of the set of
eigenfunctions. It is worth noting that the refraction effects resulting from the wall shear
layer can also significantly affect the propagation of sound waves in ducts. These effects
have been extensively studied in the 70s, and a detailed review was given by Nayfeh et al.
[6].

The mathematical formulation leads to a system of equations for the normal modes.
The resulting eigenvalue problem, which is not self-adjoint, is solved numerically
using a pseudo-spectral technique for accuracy. As a result of the vorticity in the mean
flow, a critical layer appears in the flow where the wave speed equals the fluid speed. As
one approaches the critical layer, the accuracy of the numerical scheme is not sufficient
to resolve the structure of the flow. An asymptotic analysis is then employed to properly
and accurately determine the eigensolutions.

2. FORMULATION

The propagation of small-amplitude unsteady disturbances in an annular inviscid,
non-heat-conducting, swirling flow (see Figure 1) is considered. The total velocity field is
assumed to be

V� (x� , t)=U� (x� )+ u� (x� , t), (1)
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where U� (x� ) is the mean flow velocity and u� (x� , t) represents the disturbance velocity such
that =u� (x� , t)�=U� (x� ) =. The pressure and density of the fluid can also be written as

p(x� , t)= p0 (x� )+ p'(x� , t), r(x� , t)= p0 (x� )+ r'(x� , t), (2)

where the time dependent perturbation quantities are assumed to be much smaller than
those of the mean flow, and governed by the linearized Euler equations.

The mean flow is assumed to have an axial velocity U0 with rigid body rotation and a
free axial vortex. Thus, one can write

U� (x� )=U0 êx +(Vr+G/r)êu ,

where V and G are two constants representing the angular velocity of the solid body
rotation and the strength of the axial vortex circulation, respectively; r is the radial
distance, êx and êu represent unit vectors in the axial and circumferential directions,
respectively.

The disturbance velocity is now decomposed into potential and rotational parts,

u� =9f+ u� (R). (3)

Without loss of generality, one assumes that

p'=−r0 D0f/Dt, (4)

and as a result, the linearized Euler equations are reduced to the following two coupled
equations [8]:

D0u� (R)

Dt
+(u� (R) · 9)U� =−z� ×9f, Lf=(1/r0 )9 · (r0u� (R)), (5, 6)

where the mean flow vorticity is z� =2Vêx , r0 is the mean flow density, D0 /Dt is the
convected derivative

D0 /Dt= 1/1t+U0 1/1x+(G/r2 +V) 1/1u, (7)

and L is the convected wave operator defined as

L0 (D0 /Dt) (1/c2
0 ) (D0 /Dt)− (1/r0 )9 · (r09), (8)

where c0 is the mean flow speed of sound. Assuming rigid duct walls, the boundary
conditions at the hub and tip radii rh and rt are

1f/1r+ u(R)
r =0, (9)

Figure 1. Swirling mean flow in an annular duct.
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where u(R)
r is the radial component of u� (R). Note that the governing equations (4), (5), and

(6) are valid for any non-axisymmetric mean flow. The coupling between the vortical and
potential modes in equations (5, 6) shows that, due to the non-uniformity of the mean flow,
an inlet vortical disturbance will always induce an unsteady ‘‘hydrodynamic’’ pressure
field. However, equation (5) suggests that, if the mean flow is irrotational, an incident
potential disturbance will not create a vortical perturbation of the velocity field. Thus, the
solution to the coupled equations (5) and (6) depends on the upstream condition of the
unsteady flow. In the eigenmode analysis of an unsteady vortical swirling flow presented
below, one assumes incident potential perturbations of the flow. Thus, the vortical
disturbances can only be initiated through the coupling in equations (5) and (6) which
occurs for rotational mean flows.

2.1.   

The normal mode analysis is used to obtain the spectrum of propagating and evanescent
acoustic–vorticity modes of equations (5) and (6). To this end, the following Fourier
expansion is assumed:

{u(R)
x , u(R)

r , u(R)
u , f}(x, r, u; t)=g

a

−a

s
a

m=−a

s
a

n=1

{Xmn (r), Rmn (r), Tmn (r), 8mn (r)}

×ei(−vt+mu+ kmn x) dv, (10)

where m and n are integer modal numbers characterizing the circumferential and radial
eigenmodes, respectively. Due to the linear character of the problem, each Fourier
component of the solution vector can be considered separately. Using equation (4), the
pressure modes are given by

p'mn (r)=−ir0 (r)8mn (r)Lmn , (11)

where Lmn is an eigenvalue of the convected operator D0 /Dt, defined by

Lmn = kmnU0 −v+m(V+G/r2). (12)

Note that Lmn is a function of radius which appears as a parameter in D0 /Dt.
The coupled system of equations (5) and (6) can now be represented in terms of normal

modes as

LmnXmn (r)=0, LmnRmn (r)+2iTmn (r) (V+G/r2)− (2V m/r)8mn (r)=0,

iLmnTmn (r)+2VRmn (r)+2V d8mn (r)/dr=0,

d28mn (r)
dr2 +01r +

d ln r0

dr 1 d8mn (r)
dr

+0L2
mn

c2
0

− k2
mn −

m2

r2 18mn (r)

+01r +
d ln r0

dr 1 Rmn (r)
r

+
dRmn (r)

d r
+

im
r

Tmn (r)+ ikmnXmn (r)=0. (13)

If one considers only incident potential perturbations then the uncoupled axial component
of the vortical velocity Xmn (r)=0. One assumes a duct with rigid walls, and therefore the
boundary conditions for equations (13) are

Rmn (r)+d8mn (r)/dr=0 (14)
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at hub and tip radii r= rh and r= rt . The properties of numerical solutions of the
eigenvalue problem (13, 14) are investigated for different kinds of the mean swirl. The
eigenvalues kmn represent allowed axial wavenumbers of the acoustic–vorticity modes.

2.2.  

The eigenvalues kmn corresponding to Lmn =0 represent the purely convected modes. It
will be shown now that, in the general case of a vortical mean swirl, the boundary value
problem defined by equations (13, 14) has a critical layer corresponding to Lmn:0. First,
the following transformation is introduced:

cmn (r)=8mn (r) [r2Lmn ]mV/(−v+U0k+mV), (15)

and then the eigenfunctions Rmn (r) and Tmn (r) are eliminated from equations (13). The
boundary value problem reduces to a single equation:

c0mn6 L2
mn

D(Lmn )7+c'mn601r +
d(ln r0 )

dr 1 L2
mn

D(Lmn )

+
4LmnV[mL2

mn r2 +2LmnG−4mr2(V+G/r2)2]
r3D2(Lmn ) 7+cmn6m2

r2 + k2
mn −

L2
mn

c2
0 7=0 (16)

with boundary conditions

dcmn (r)/dr=0 (17)

at r= rh and r= rt , where D(Lmn )=4V(V+G/r2)−L2
mn . It is important to point out that

the eigenvalue kmn appears in a non-linear way in all the coefficients of equation (16), and
as a result, the boundary value problem (16, 17) is not a Sturm–Liouville problem.

Note that once this problem is solved and the potential eigenfunction 8mn (r) is recovered
from equation (15), the azimuthal and radial vortical velocity modes are immediately
deduced from equation (13):

Tmn (r)=−[4imV2/rD(Lmn )]8mn (r)− [2iVLmn /D(Lmn )] d8mn (r)/dr,

Rmn (r)=−[2mVLmn /rD(Lmn )]8mn (r)− [4V(V+G/r2)/D(Lmn )] d8mn (r)/dr. (18)

Solution of equation (16) may possess a singular critical layer corresponding to a purely
convected eigenmode with Lmn =0. If G$ 0, V$ 0 and m$ 0, this layer extends for
ṽm (rh)U0 E kmm E ṽm (rt )/U0 or ṽm (rt )/U0 E kmm E ṽ (rh ) depending on the sign of m. In
where ṽm =v−m(V+G/r2). In this case, an asymptotic behavior of the potential
solution at the critical layer can be obtained directly from equation (16) for a range of
circumferential modal numbers. Then, if it can be shown that for certain m the solution
is singular at Lmn =0, it may indicate that solution of the corresponding initial value
problem develops an instability wave asymptotically represented by the singular
eigenmodes.

By assuming that the convected solution is sought for a certain r= rc , and introducing
Lmn as a new variable j(r) so that j:0 for r:rc , equation (16) reduces to leading to

j2c0mn + a1jc'nm +a2cmn =0, (19)

where the derivatives are now taken with respect to j, real constants a1 and a2 are
estimated at r= rc and kmn = kc ,

a1 =2(Vr2
c +G)/G, a2 =Vr2

c (Vr2
c +G) (m2 + r2

c k2
c )/m2G2, (20)
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Thus j=0 is a regular singular point, and at least one non-trivial solution of equation
(19) exists of the form

cmn (j)= js s
a

l=0

Alj
l (21)

which can be regular or irregular near j=0 depending on the value of exponent s. The
latter is determined from the indicial equation

s2 + s(a1 −1)+ a2 =0 (22)

which gives

s1,2 =−(Vr2
c /G+1/2)2 [1/4−Vr4

c (Vr2
c +G)k2

c /m2G2]1/2. (23)

For a convected mode such that =m =q 2kc r2
c [V(Vr2

c +G)]1/2/G, the exponents are real and
equal to s1,2 =−(Vr2

c /G+1/2)2 b, where 0Q bQ 1/2 is a real constant. In view of
transformation (15) for j:0, the potential eigenfunction 8mn (j)= (r2

c j)Vr2c /Gcmn (j) assumes
two linearly independent real solutions singular at j=0, of the form

8(1,2)
mn (j)= j−1/22 b s

a

l=0

Alj
l. (24)

On the other hand, if =m =Q 2kc r2
c [V(Vr2

c +G)]1/2/G, the indicial equation gives two complex
conjugate numbers s1,2 =−(Vr2

c /G+1/2)2 ib (bq 0) and hence two oscillatory complex
eigenfunctions

8mn (j)+ j−1/2 exp {2ib log j} s
a

l=0

Alj
l. (25)

In addition to singularity at j=0, the frequency of modal oscillations also becomes
infinite at this point. Note that more spinning modes will exhibit such behavior as the
portion of rigid body rotation is increased in the mean swirl.

From equations (18), the total circumferential and radial velocity modes behave at the
critical layer like

Tmn (r)+ im8mn (r)/r=imG(8mn (j)+ j d8mn (j)/dj)/rc (Vr2
c +G) (26)

and

Rmn (r)+d8mn (r)/dr=−mrcj8mn (j)/2(Vr2
c +G), (27)

respectively. The axial velocity mode is just ikc8mn (j). Note that as in Kerrebrock’s
analysis, the radial component vanishes as j:0. However, the axial and circumferential
perturbation velocities are singular at the critical layer.

The convected pressure mode is ir0(rc )j8mn (j), and thus also vanishes at the critical point
for any m. The pressure gradient is, however, singular since, as it would be expected, it
must balance the singular velocities at the critical layer.

It will be shown below that a set of discrete nearly-convected eigenvalues surrrounds the
convected region. Examination of equation (16) indicates that near the convected region,
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eigensolutions will exist only when both coefficients of c0mn and cmn are positive. This implies
that D(Lmn )e 0, or

−2zV(V+G/r2
h )ELmn E 2zV(V+G/r2

t ). (28)

One may expect the pressure associated with these nearly-convected eigenmodes to
become more significant as the eigenvalues move away from the convected critical layer.
Such modes thus may be particularly important in the formulation of the inflow/outflow
conditions. In order to carefully investigate the behavior of nearly-convected solution, the
numerical normal mode analysis of equations (13) presented below will be complemented
later by a multiple-scale eigenvalue analysis of equation (16) in the vicinity of the critical
layer.

2.3.   

In the case of a potential swirl, the mean flow is represented as a combination of a
uniform flow and a free vortex swirl, U� =U0 êx +(G/r)êu . This problem was investigated
in reference [5]. Equations (13) suggest that the convected modes are uncoupled from the
pressure modes. This corresponds to the homogeneous solution of equation (5) and
suggests the following modal expansion:

{u(R)
x , u(R)

r , u(R)
u , f}(x, r, u; t)=g

a

−a

s
a

m=−a

s
a

n=1

{Xmn (r), Rmn (r)

+
2G

r2U0
xTmn (r), Tmn (r), 8mn (r)} ei(−vt+mu+ kmn x) dv. (29)

This implies the existence of a secular term which amplifies the radial vortical velocity.
Therefore such modes will grow algebraically in a duct with potential mean swirl. Note
that in reference [8] it was shown that for an initial-value problem, this secular term is
cancelled by a similar term of the potential velocity arising from the inhomogeneous wave
equation (6). It was also shown that the pressure caused by these modes acting as a source
in equation (6) will vanish at large distances. Hence, only pressure-less convected vorticity
modes will propagate far downstream in a duct.

On the other hand, the pressure modes associated with the potential velocity will
correspond to a homogeneous solution of equation (6). Thus, the pressure waves will
propagate exactly as sound waves in the non-uniform medium of the potential swirling
flow, i.e., the wave speed will be equal to the speed of sound in a local frame of reference
moving with the local mean flow. Note that this is not the case for a vortical swirling mean
flow, where the coupling between vortical and potential modes will force the discrete
pressure modes to propagate with phase speeds different from the local speed of sound.

The corresponding eigenvalue problem for discrete sound pressure modes is then
reduced [5] to solving a homogeneous equation:

Lf=0. (30)

In equation (16), one has V=0, D(Lmn )=−L2
mn , and cmn (r)=8mn (r), which reduces the

eigenvalue problem to

6 d2

dr2 +01r +
d(ln r0 )

dr 1 d
dr

+0L2
mn

c2
0

− k2
mn −

m2

r2 178mn (r)=0, (31)
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with 18mn (r)/1r=0 at r= rh and r= rt . Note that this boundary value problem does not
have a critical layer as Lmn is no loner a singular parameter of the problem. However,
it still appears non-linearly in the eigenvalue equation as a result of refraction of the sound
waves by the mean flow. The eigensolution of equation (32) was analyzed in detail in
reference [5].

2.4.   

In the general case, one describes the mean flow as a combination of an axial flow, rigid
body rotation, and a free vortex: U� =U0 êx +(Vr+G/r)êu . Note that Lmn is a non-linear
parameter of the eigensystem (13). To solve the problem numerically, a new variable
hmn (r)= kmnb

2
0 8mn (r) (b2

0 =1−(U0 /c0 )2), is introduced, which brings the eigensystem (13)
to the following standard form:

0 1/b2
0 0 0 8mn 8mn

R −
2ṽmU0

c2
0 b

2
0 0 d

dr
+

1
r
+

d(ln r0 )
dr 1 m

r
hmn hmn

G
G

G

G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

G

G

J

j

G
G

G

G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

G

G

J

j

G
G

G

G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

G

G

J

j

2mV

rU0
0

ṽm

U0
−

2(V+G/r2)
U 0

Rmn
=kmn Rmn

,

−
2V

U0

d
dr

0 −
2V

U0

ṽm

U0
iTmn iTmn

(32)

where the differential operator

R=
d2

dr2 +01r +
d(ln r0 )

dr 1 d
dr

+0ṽ2
m

c2
0

−
m2

r2 1,

and boundary conditions are defined by equation (14). Equation (32), shows that the
potential and vortical modes are coupled and suggests that the eigenmode will
represent coupled acoustic–vorticity modes. The eigensystem can be solved numerically,
and in the following discussion the focus will be on the methods of solution applied to
this system.

3. NUMERICAL SOLUTION

The eigensystem (32) was solved numerically using two computational methods: a finite
difference technique, and a pseudo-spectral method [9]. Both of them eventually reduced
the problem to solving an algebraic eigensystem, which was then implemented by a shifted
QR algorithm (e.g., reference [10]). The finite difference scheme used a straightforward
fourth order approximation of differential oeprators in equation (33), with boundary
conditions (14) incorporated in the system at the end points of the computational domain.
If N is the number of grid points used in the numerical discretization of the domain
rh Q rQ rt , then one obtains 4N different eigenvalues (km,1 , km,2 , . . . , km,4N ) for a given
frequency v and circumferential modal number m.

However, the accuracy of the finite difference scheme was not sufficient to resolve
the nearly-convected eigensolutions in the vicinity of a critical layer Lmn =0. The
pseudo-spectral method yields more accurate results, though, as will be seen in the
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following section, there always remains a region close to the critical layer where asymptotic
analysis is needed. The pseudo-spectral method is based on the Chebyshev expansion
method with exponential convergence, and thus is capable of accurately resolving thin
layers of steep changes such as critical layers [9]. In addition, the pseudo-spectral method
employs the convenience of calculating derivatives and integrals from Chebyshev
expansions. With the collocation points selected as xl =cos [p(l−1)/(N−1)] for
1E lEN, each eigenfunction of the system is represented as

fl = s
N

p=1

ap cos
p(p−1) (l−1)

N−1
,

where ap are coefficients of the spectral expansion. If one defines (in matrix form)
f=(f1 , f2 , . . . , fN )T, then the first and second derivative vectors are determined by

f '=W(1)f, f0=W(2)f. (34)

The matrices W(1) and W(2) can be easily calculated from the values of Chebyshev
polynomials in the collocation points (see reference [9]). The eigensystem then can be
rewritten:

0 (1/b2
0 )djl 0 0

Ejl −
2ṽmU0

c2
0 b

2
0

djl
2
D

W(1)
jl +01r +

d(ln r0 )
dr 1djl

im
r

djl

G
G

G

G

G

G

G

F

f

G
G

G

G

G

G

G

J

j

2mV

rU0
djl 0

ṽm

U0
djl −

2i(V+G/r2)
U0

djl

−
4
D

V

U0
W(1)

jl 0 −
2V

U0
djl

iṽm

U0
djl

8ml 8ml

hml hml

G
G

G

F

f

G
G

G

J

j

G
G

G

F

f

G
G

G

J

j

×
Rml

= kml Rml
(34)

iTml iTml

where 1E lEN, 1E jEN, djl is a Kronecker symbol, D= rt − rh , and matrix

Ejl =
4
D2 W(2)

jl +
2
D 01r +

d(ln r0 )
dr 1W(1)

jl +0ṽ2
m

c2
0

−
m2

r2 1djl .

The collocation points −1E xl E 1 are mapped to rl = xlD/2+ (rt + rh )/2. The boundary
conditions (14) are transformed to

(2/D)W(1)
1l 8ml +Rm1 =0, r= rh , (2/D)W(1)

Nl 8ml +RmN =0, r= rt ,

where, as before, the repeated indices l mean summation over them. These conditions are
incorporated in equation (35) at the end points of the domain.

Since the original eigenvalue problem (13, 14) is not of the Sturm–Liouville type, the
eigenvalues of equation (13) are in general complex. The calculations reveal two families
of discrete eigenvalues k(u,d)

mn corresponding (in a local frame of reference moving with a local
mean flow) to upstream and downstream propagating ‘‘pressure-dominated’’ eigenmodes.
In addition, in the case of rotational mean flows, there appears a family of discrete
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nearly-convected eigenvalues corresponding to ‘‘vorticity-dominated’’ acoustic–vorticity
modes. The meaning of the quoted terms will become clear from the following discussion.

The eigenvalues are arranged as follows. Those eigenvalues which are real and thus
correspond to propagating acoustic–vorticity waves are first considered. The evanescent
and amplifying modes are arranged according to the increasing imaginary parts of the
eigenvalues. Finally, the nearly-convected roots corresponding to Lmn:0 can be identified
for rotational mean flows. In the numerical calculations, some of these eigenvalues are
associated with spurious solutions as one comes close enough to the singular critical layer.
However, contrary to eigenvalues which correspond to physically meaningful
nearly-convected modes, spurious eigenvalues change as the numerical discretization is
changed, and thus can be easily recognized. In the following discussion of numerical
results, the spurious roots are not shown in the presented figures.

4. RESULTS OF NUMERICAL ANALYSIS

In this section the spectrum of acoustic–vorticity eigenmodes resulting from the
numerical eigenvalue analysis of equation (33) is considered. The effect of the mean flow
on the propagation of the modes in the upstream and downstream directions is examined,
as well as the behavior of the eigensolutions near the critical layers. The results are
presented in terms of the double set of eigenvalues k(u,d)

mn for m=0, 2, 25 and
n=1, . . . , 15. The modes with positive and negative m correrspond to non-axisymmetric
waves rotating with or opposite to the mean swirl, respectively. Note that the eignemodes
are normalized numerically so that the norm of a complete eigenvector of equation (35)
is defined by

> f >= s
4(N+1)

j=1

[=Re ( fj ) =+ =Im ( fj ) =]h=1, (35)

where h is the discretization step.
For numerical calculations, one considers an annular duct with hub and tip radii rh =4

and rt =6, respectively. A non-dimensional frequency v̄=vrm /c̄0 is also introduced, where
rm is the mean radius of the annulus and c̄0 is the stagnation speed of sound. The results
are presented for v̄=8, for an axial flow Mach number M0 =0·3. The total Mach number
of the swirling flow components (specified at the mean radius) is fixed for Ms =0·3, but
the nature of the swirl may vary.

The case of a potential swirling flow was considered in detail in reference [5], where the
accuracy of the finite difference numerical scheme was also examined. Here the results for
MG =0·3 are presented for comparison. Figure 2(a) shows the results for m=−5, 0, 5.
The axial component of the mean flow produces a Doppler shift in Re (kmn ), so that all
evanescent and amplifying modes will propagate only upstream. In a frame of reference
moving with the local mean velocity, such modes do not propagate. For m=0, the
calculations show two propagating modes, and an infinite discrete set of evanescent and
amplifying modes (the latter are usually discarded in applications as non-physical). For
non-axisymmetric modes (m$ 0), because of the Doppler effect due to the swirling
component of the mean flow, there are more acoustic modes swirling in the direction
opposite to the mean flow rotation. This results from the fact that for such modes the
modified frequency ṽm is larger than v, when m is negative. In addition to the discrete
set of acoustic eigenvalues, a continuous spectrum of convected eigenvalues is seen from
Figure 2(a). Note that for m=0, there is a single convected eigenvalue.
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Figure 2. Eigenvalues k(u,d)
mn for v̄=8, n=1, . . . , 15: +, m=−5; w, m=0; ×, m=5. (a) M0 =0·3,

MG =0·3; (b) M0 =0·3, MV =0·3.

Figure 2(b) shows the eigenvalues of equation (35) for the vortical flow with MV =0·3,
MG =0, for modes with m=−5, 0, 5. Two distinct sets of eigenvalues are seen. The
corresponding eigenmodes represent acoustic–vorticity waves. The acoustic–vorticity
eigenmodes corresponding to the first set propagate with phase speeds close to the speed
of sound, and will be pressure-dominated. Figure 3(a) illustrates the pressure and axial
vorticity eigenmodes obtained from the normalized eigenvector in equation (36), for m=2.
The vorticity-dominated eigenmodes from the second set are shown in Figures 3(b, c).

Note that as kmn gets closer to the critical value kc , the modes exhibit oscillatory behavior
with larger gradients. The set of nearly-convected eigenvalues contains two branches of
eigenvalues which asymptotically (with increasing density) approach a singular point

Figure 3. Pressure and axial vorticity eigenmodes for M0 =0·3, MV =0·3, v̄=8, m=2. Pressure dominated
eigenmodes: (a) kmn =5·37. Vorticity-dominated eigenmodes: (b) kmn =23·64, (c) kmn =24·36.
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Figure 4. Nearly-convected eigenvalues for v̄=8, m=2. (a) M0 =0·3, MV =0·3. (b) M0 =0·3, MV =0·2,
MG =0·1.

corresponding to a pure convection (Lmn =0) (Figure 4(a)). As indicated before, these
eigenvalues are located between the zeros of the polynomial D(kmn )=0 which appears
in the coefficients of the eigenvalue equation (16). Therefore, it can be easily shown
that

(ṽm −2V)/U0 E kmn E (ṽm +2V)/U0 . (36)

The corresponding nearly-convected eigenmodes exhibit a sinusoidal behavior, with the
frequency of oscillations increasing as the eigenvalues approach the critical point. Also,
for such modes vorticity becomes more and more dominant (compare Figures 3(b) and
3(c)).

For a potential mean swirl, there is a continuous spectrum of convected eigenvalues,
with the acting centrifugal forces giving rise to an algebraic growth of the corresponding
vorticity modes [5, 8]. On the other hand, for a vortical mean swirl Coriolis forces deflect
a perturbed fluid particle from its convected path, thus prohibiting a purely convected
solution. This produces a mutual coupling of potential and vortical disturbances, which
leads to a critical layer in the region of nearly-convected eigenvalues. This region is
different depending on the nature of the swirl. Figure 4(b) shows details of the eigenvalues
near the critical layer when the swirl contains both potential and vortical components, with
MV =0·2 and MG =0·1. The difference from the previous case (Figure 4(a)) results mainly
from the fact that Lmn is now also a function of the radius. Therefore, the critical layer
corresponding to a prohibited convected solution with Lmn (kmn , r)=0, now occurs for a
range of eigenvalues ṽm (rh )/U0 E kmn E ṽm (rt )/U0 . Numerically, this range is filled with
spurious roots which change their values depending on the number of collocation points
in the numerical scheme. As one increases m from 2 to 20, the number of physical roots
in the left and right branches gradually decreases, so that for m=20 it reduces to one in
each of the two branches (Figure 5). The set of nearly-convected eigenvalues is bounded
by zeros of D(kmn , r)=0 so that

ṽm (rh )−2zV(V+G/r2
h)

U0
E kmn E

ṽm (rt )+2zV(V+G/r2
t )

U0
. (37)
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Figure 5. Numerical reduction of non-spurious roots for nearly-convected eigenvalues for M0 =0·3, MV =0·2,
MG =0·1, v̄=8. (a) m=2, (b) m=6, (c) m=15, (d) m=20.

The behavior of nearly-convected eigenfunctions is shown for m=2 in Figure 6. As one
moves along the left branch of eigenvalues toward the left edge of the critical layer, the
corresponding eigenfunctions become highly oscillatory near the hub radius
(Figures 6(a, b)). A strong radial variation of amplitudes of the modes can also be noted.
The same pattern, but near the tip radius, is observed for eigenmodes corresponding to
the right branch of the eigenvalues (Figures 6(c, d)). Thus, as kmn moves from the left to
the right edge of the critical layer, the singularity travels from hub to tip radius. This
singularity is related to the infinite peaks of the disturbance vorticity which occur at
different radii depending on the mode wavelength. It may be worthwhile to state that this

Figure 6. Nearly-convected pressure and axial vorticity eigenmodes for M0 =0·3, MV =0·2, MG =0·1, v̄=8,
m=2. (a) kmn =23·63, (b) kmn =24·19, (c) kmn =24·93, (d) kmn =25·35.
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Figure 7. Nearly-convected eigenvalues for M0 =0·3, MV =0·3, v̄=8, m=2, kc =24·67, w, numerical
solution; +, asymptotic solution. (a) Numerical results, (b) comparison of numerical and asymptotic solutions.

singular behavior is due to the omission of viscosity which must take care of dissipation
of singular vorticity in the critical layer.

5. MULTIPLE-SCALE ANALYSIS OF THE CRITICAL LAYER

In the close vicinity of a critical layer, the results of numerical solution fail to accurately
predict the behavior of nearly-convected modes. Figure 7(a) shows details of the
nearly-convected eigenvalues from Figure 4(a), including the spurious roots for
illustration. An asymptotic analysis is used to study the behavior of the eigenvalues and
eigenfunctions for Lmn:0. Two cases of vortical mean swirl are considered separately as
the corresponding asymptotic solutions show a remarkable distinction. The first case
corresponds to a pure solid body rotation flow, and the second case represents a swirling
flow composed of a solid body rotation and a free vortex. For convenience, all lengths
in the present analysis are normalized by the mean radius of the annulus, rm , and all
velocities, by U0.

5.1.     : V$ 0, G=0.

To study the solution to the boundary-value problem (16, 17) one first introduces the
fast variable, j=(r− rh )/Lmn . It is convenient to introduce the critical eigenvalue
kc =vm =v−mV, which corresponds to Lnm =0. It follows that Lmn = kmn − kc.
Applying the stretching transformation r:j to equation (16), and keeping only the leading
terms in Lmn , one obtains the simple eigenvalue problem,

c0mmjj −(4mV/r)c'mnj +4V2{m2/r2 + k2
mn }c=0 (38)

with boundary conditions

dcmn /dj=0 (39)

at jh =0 and j= jt =D/Lmn (D= rt − rh). The characteristic roots of equation (38) are

g1,2 (kmn )=2mV2 2iVkmn , (40)
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and hence the eigenfunctions are of the form

cmn (j)=Aexp (2mVj)cos (2Vkmnj+ q� , (41)

where q� =tan−1 (m/kmn ) and A is an arbitrary constant. Substituting equation (41) into
conditions (39), one obtains the simple dispersion relation

2kmnVjt = np, (42)

where n is an integer. This gives an infinite discrete spectrum of real eigenvalues,

kmn = kc
pnU0

pnU0 −2VD
. (43)

Since \Lmn \= \kmn − kc \W 1, expression (43) is only valid for large positive and negative n.
It is easy to see that as n:2a, the eigenvalues cluster with increasing density
approaching the critical layer (accumulation point):

bkmn − kc

kc b0 2VD

np
(44)

The results of the multiple-scale analysis are compared with the numerical solution in
Figure 7(b) which shows a blow-up of the right branch from Figure 7(a). These results
compare well, but as kmn approaches the critical point kc , the numerical method fails to
resolve the near singular behavior of the eigensolution. The numerical and asymptotic
results start to diverge again farther away from the critical layer as Lmn increases and the
asymptotic solution is no longer valid.

The eigenfunctions (41) expressed in terms of the slow variable, r− rh , have the
wavenumbers

bmn 0 pn/D:a, as n:a. (45)

This is in agreement with the highly oscillatory behavior of the nearly-convected modes
throughout the annulus, rh E rE ri , found from the numerical analysis (see Figures
3(b)–(3)). Note that the wavenumbers (45) are independent of V.

Figure 8 shows a comparison between the normalzed values of cmn obtained from the
numerical calculations and the asymptotic results (41). The two results are in good
agreement, thus validating the numerical approach.

5.2.   : V$ 0, G$ 0.

In the general case of a mean swirling flow with solid body rotation and free vortex,
it is assumed that the parameters V and G have the same sign. This eliminates the
possibility of hydrodynamic instability in the flow1. In particular, without loss of
generality, it is assumed that Vq 0 and Gq 0. Again, it is convenient to introduce the
critical eigenvalue

kc (r)= ṽm (r)=v−m(V+G/r2) (46)

which corresponds to Lmn =0. Since Lmn vanishes for a range of r, a critical layer may exist
for a range of values kmn =kc. For modes spinning in the direction of the swirl, mq 0,
this layer extends for

ṽm (rh )E kc E ṽm (rt ), (47)

1Rayleigh’s criterion for inviscid instability reduces for this flow to V(V+G)Q 0.
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Figure 8. Comparison of numerical (——) and asymptotic (– – –) eigenfunctions cmn , M0 =0.3, MV =0.3,
v̄=8, m=2, n=20, kmn =24.36.

and for those spinning in the opposite direction mQ 0, for

ṽm (rt)E kc E ṽm (rh ) (48)

Note that for an axisymmetric disturbance, m=0, the critical layer collapses to a single
point kc =v, and the analysis becomes similar to the previous case of G=0.

In order to develop an asymptotic analysis similar to Section 5.1 for eigensolutions near
the critical layer, one assumes that \Lmn \�1. The fast variable j(r) is introduced by

dj= − dr/Lmn. (49)

Note that, in general, Lmn may be complex.
Outside the critical layer,

Lmn = kmn − kb
c +mG 01

r2 −
1
r2

c1, (50)

where Lmn (kb
c , rc)=0, and rc can be the hub or the tip radius of the annulus. In what

follows, rc = rh is assumed. An asymptotic analysis of the behavior of the eigenvalues kmn

near the left border of the critical layer is derived for mq 0, i.e., kmn:kh
c , where

kh
c = ṽm (rh ) (a similar analysis can be applied for mQ 0).
Note that since asymptotic analysis assumes \Lnm \�1 for the range of rh E rE rt, this

requires that (rt − rh )/rm�1. Thus integrating equation (49) and keeping the leading terms,
one obtains the expression for the fast variable,

j(r)=
1

2mG
ln $1−2mG

(r− rh )
(kmn − kh

c )%. (51)

Substituting equation (49) into equation (16) yields, to leading order,

c0mmjj −2m (2V+G)c'mnj +4V(V+G){m2 + kmn =0, (52)
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with the same wall conditions (39) at j= jh and j= jt . Equation (52) has the
characteristic roots:

g1,2 (kmn )=−m(2V+G2 [m2G2 −4Vk2
mn (V+G)]1/2 . (53)

and thus the eigenfunctions are

cmn (j)=B exp [−m(2V+G)j] cos (b	 mnj+f� ), (54)

where b	 mn =[4Vk2
mn (V+G)−m2 G2]1/2, f� =tan−1 [m(2V+G)/b	 mn] and B is an arbitary

constant. It is interesting to note the similarity between the eigensolution (54) and that
obtained in Section 2.2.

Applying conditions (39) gives the following dispersion relation,

b	 mnjt = np, (55)

where jt = j(rt ), and n is a positive integer. Since \kmn − kh
c \�1, one can expand b	 mn to

obtain

b	 mn =z4V(kh
c )2(V+G)−m2 G2 [1+Q(kmn − kh

c )]+ . . . . , (56)

where
Q=4Vkh

c (V+G)/a, (57)

and a=4V(kh
c )2(Q+G)−m2 G2. This shows that eigensolutions exist only for

m2 Q 4V(kh
c )2 (V+G)/G2 (58)

which is the same condition obtain in the critical layer analysis in Section 2.2.
Substituting expressions (51) and (56) into equation (55) and equating the leading order

terms gives

\kmn − kh
c \0 2mGD exp{−2npmG/za}. (59)

This result shows that, while for the previous case of V$ 0, G=0 the eigenvalues
accumulate algebraically near the critical point as n:a (equation (44)), the eigenvalues
will accumulate exponentially at the edge of the critical layer for the general swirl.

If one introduces kmn = amn + ikmn and kmn − kh
c = \kmn − kh

c \exp(iq), and equates the
leading order imaginary terms, then

q0−Q kmn ln\kmn − kh
c \ , (60)

where

q=tan−1 kmn

amn − kh
c
. (61)

If q=O(1), then kmn =O(1/n0, but this is not acceptable in view of equation (59), hence
q�1. Equating equations (60) and (61) shows that knm vanishes faster than
exp{−2ppmG/Za}, thus implying a real solution for kmn .

It is easy to generalize this analysis for eigenvalues in the vicinity of both kh
c and kt

c ,

\kmn − kb
c \0 2mGD exp{−2 \n \pmG/za}. (62)

The asymptotic results (‘+’ symbol) are compared with those of the direct numerical
solution of eigensystem (13) (in circles) in Figure 9. The enlargements of the left and right
branches of the nearly-convected eigenvalues are shown for varying radial modal numbers
n and a set of parameters M0 =0.3, MV =0.2, MG =0.1 and v̄ =8 (as in Figure 4(b)).
Note that the numerical solution is in good agreement with the asymptotic results except
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Figure 9. Comparison of numerical and asymptotic solutions for nearly-convected eigenvalues, M0 =0.3,
MV =0.2, MG =0.1, v̄=8, m=2, 24.49E kc E 24.87, w, numerical solution, +, asymptotic solution. (a) Left
and (b) right branch.

in the immediate vicinity of the borders of the citical layer. On the other hand, as the
eigenvalues depart away from the critical layer, the asymptotic results may become a less
accurate representation of the solution. These results also show the accuracy of the
numerical procedure employing a pseudo-spectral method.

As it was indicated in the critical-layer analysis of Section 2.2, there are no oscillatory
eigensolutions for m2 e 4Vk2

c (V+G)/G2. If

V(V+G)3 qG2/4. (63)

there are no eigensolutions for the range of circumferential wavenumbers satisfying

v

V+G+G/[2zV(V+G)]
EmE v

V+G−G/[2zV(V+G )]
(64)

On the other hand, if

V(V+G)3 QG2/4, (65)

no eigensolutions will exist for
mE v

V+G−G/[2zV(V+G)]
(66)

and

me v

V+G+G/[2zV(V+G)]
(67)

Therefore, for each mode m there will be a cut-off (or cut-on) frequency band of width

dv=mG/zV(V+G). (68)

Note that for G=0, the eigensolutions will always exist in the vicinity of the critical point.
The cut-off band (68) corresponding to condition (63) will increase as the portion of the
potential swirl component increases for V-fixed and G:a. On the other hand, if G is fixed
and V:0, condition (65) will hold and thus the cut-on band dv:a. In this limit, the
critical layer vanishes and the eigenvalues form a continuum convected spectrum.
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For each m from the ranges (64), (66) and (67), a critical layer with kmn = kc will occur
at some radial position rh E rc E rt . From expression (59), as m increases toward its cut-off
values, the eigenvalues approach the edge of the critical layer faster. As a result, the direct
numerical analysis fails to resolve the area of eigenvalues which concentrates too close to
the critical layer, and this explains the results in Figure 5. To obtain the correct solution
for m from the cut-off ranges, viscous dissipative effects will need to be included in the
analysis.

6. CONCLUSIONS

The propagation of the acoustic–vorticity waves in an annular duct with mean swirling
flow has been investigated. The mean flow is composed of a uniform flow, free vortex
rotation, and rigid body rotation. The analysis shows that the disturbances can be split
into a nearly-convected vorticity dominated part and a nearly-sonic pressure dominated
part, obeying weakly coupled equations. The coupling between vorticity and pressure is
due to Coriolis and centrifugal forces. The nearly-convected modes can be identified with
the purely convected gusts in a non-swirling flow.

A normal mode analysis leads to a singular eigenvalue problem unless the mean swirl
is potential. A pseudo-spectral method is used to calculate the eigenvalues and the
corresponding eigensolutions. However, near the critical layer, an asymptotic analysis is
developed to accurately resolve the solutions.

The results show two families of solutions. The first family comprises the pressure
dominated modes which may propagate with different phase speeds both upstream and
downstream. Due to the Doppler frequency shift most non-axisymmetric modes propagate
opposite to the mean flow swirl. The second family represents vorticity dominated
nearly-convected eigenmodes. These modes are split into two branches and clustered with
increasing density as they approach the accumulation critical layer. The continuous
spectrum of convected eigenvalues in the case of a potential swirl changes in the case of
a vortical swirl to an infinite discrete spectrum of eigenvalues accumulating on either sides
of the critical layer. The rate of accumulation appears to be different for a pure solid body
rotation flow and a flow composed of a solid body rotation and a free vortex. When both
the solid body and the free vortex induced rotations are in the same direction, no unstable
nearly-convected modes have been found outside the critical layer.
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